
  
Abstract – Fan-beam collimation provides the optimal geometry 
for data collection for brain SPECT imaging. For a non-parallel 
projection geometry, there is no symmetry on the projection 
rays, except the periodical property of the projection angle. This 
property is well defined by circular harmonic decomposition 
(CHD). This paper utilizes the CHD to explore the fan-beam 
collimation geometry, including photon attenuation and 
collimator response, for quantitative brain SPECT in three 
dimensions. An analytical solution compensating simultaneously 
for both of the photon attenuation and collimator responses is 
presented.  An efficient algorithm for the solution is formulated 
and implemented by fast Fourier transforms. The reconstruction 
has been validated by experiments on the Shepp-Logan and 
Hoffman brain phantoms at various noise levels. 
 
Index terms—circular harmonic decomposition, point 
spread function, fan-beam collimation. 
 

I. INTRODUCTION 
 

Single photon emission computed tomography (SPECT) 
can provide quantitative information of the tissue functionality 
in three-dimensions (3D).  However, two major problems 
that are causing difficulties in image reconstruction for 
quantitative SPECT arise from the absorption of γ-rays by the 
body and the non-stationary point spread response of the 
collimator (the scatter of the γ-rays can be treated by other 
means and will not be discussed here).  For brain SPECT, 
the attenuation problem can be simplified, because there are 
negligible radioactive nuclides distributed inside the skull and 
scalp and furthermore the attenuation of the skull and scalp 
can be equivalent to that of an enlarged brain tissue of a 
constant attenuation coefficient, as a compensation for 
uniform attenuation in a convex region[1]. Collimator blurring 
makes the image reconstruction more complicated, even for 
the uniform attenuation and parallel-hole collimators[2].  
There does not exist a complete analytical algorithm by now 
that compensates accurately both the attenuation and the point 
spread response effects simultaneously, especially for the fan 
beam collimator geometry in 3D.  L. van Elmbt and S. 
Walrand considered the problem for parallel geometry with 
approximated algorithm[3], while E. J. Soares et al attacked 
the problem of the same geometry for some particular 

                                                           
 *T. Li is with the Department of Physics and Astronomy, State University of 
New York (SUNY), Stony Brook, NY 11790, USA. 
 J. You is with MD OnLine, Inc, Lexington, MA 02421, USA. 
 Z. Liang is with the Departments of Radiology and Computer Science, 
SUNY at Stony Brook. 

resolution variation functions, such as the Cauchy model[4].  
Other researchers correct either for the non-stationary 
resolution variation or for the constant attenuation, but not 
both.  And most of these work are either for 2D applications 
or for parallel hole collimators[5-9]. 
 

Although many iterative reconstruction algorithms can do 
the job and are flexible to be applied for many kinds of 
complicated collimator geometry[10-12], the computing burden 
is always the drawback.  If an analytical inversion formula 
can be derived for the solution of the projection equation, it is 
an interesting research topic for further investigation for 
practical use.  The derivation itself is also an interesting 
research topic. 
 

Fan-beam collimation is an optimal geometry for brain 
SPECT.  It offers no symmetry for the projections, except 
the periodical property of projection angle.  Circular 
harmonic decomposition (CHD) has been widely used to 
explore the property.  In this paper, we present an analytical 
inversion solution that simultaneously compensates for both 
photon attenuation and collimator response of the fan-beam 
collimated SPECT system. This method considers the 
collimators blurring effect and intrinsic detector response 
together as a system point spread function (PSF).  It doesn’t 
limit the PSF in certain forms, but only based on the 
assumption that the PSF is valid to each individual collimator 
hole.  Our method can be applied to parallel-hole, fan-beam, 
or varying focal-length fan-beam collimator geometry.  It 
greatly reduced the burden of computational complexity.  It 
was validated under a more realistic case of a Gaussian 
response function whose FWHM (full width at half 
maximum) is a function of relative distances (lateral and 
normal to the collimator surface) on both the Shepp-Logan 
ellipse phantom and Hoffman brain phantom. 

II. THEORY 
 

A typical fan-beam collimator geometry is shown by 
Figure 1, restricted on a single slice.  The object activity 
distribution ),,( zyxf  is of our interest. 

 
With the inclusion of uniform attenuation of the brain 

tissues and an 3D collimator response, the measured 
projection data ),,( θzspm  is expressed as: 
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where k(.) is the system point spread function.  Let the lateral 
distance to each individual collimator hole being labeled as s, 
see Figure 1, and a Cartesian coordinate system of l-t is 
chosen such that the t axis is parallel to the focusing direction 
of this hole, then the system response function k(.) can be 
assumed as: 
 

( )Rtzzsllkk +′−′−′= ,),( .    (2) 

 

 
Figure 1. Fan-beam geometry and the coordinate systems. 

 
This assumption simply means that the system response 

is a function of the distances from source activity point to the 
collimator hole in 3D.  This PSF assumption has been 
investigated by many researchers and is consistent in those 
references [13-18]. 
 

Following the method as described by Bellini et al [19] in 
dealing with the constant attenuation, we define /�V� � as the 
distance from point (V� ) on detector to the boundary of the 
object (s,t) with t>0, and let p �V�]� ��  � H[S>- /�V� �� 5@�
S�V�]� �, then (1) become: 
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By polar coordinate system, (2) can be rewritten as: 
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where the relations held as follows: 
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In general we may not have a closed inversion form for 

formula (4).  The purpose of this paper is to derive an 

optimal estimation of f(x,y,z) or f(ρ,ϕ,z) based on the equation.  
In the following, we will use the CHD technique to solve this 
simultaneous compensation problem. The theoretical 
procedure is given as follows. 
 

By Fourier transform on (4) with respect to variable z, 
we have: 
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where k
~

denotes the Fourier transform of k’ for the variable 
z, and p~  and f

~ have the similar meanings.  Note that the 

image property ),,(
~ ξϕρf can be estimated slice-by-slice 

for ¯, indicating that the compensation for the 3D collimator 
response may be uncoupled to a 2D compensation.  This is 
because that the PSF is shift invariant along the rotation z-
axis.  By computing the Fourier series expansion of  on 
both sides of (6) (this is usually called circular harmonic 
decomposition of a function in mathematics), we have the 
following formula: 
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and notation * stands for conjugate operation.  Obviously, 
(7) is only a CHD expression of (6).  Now the reconstruction 
problem becomes a task of solving a linear algebraic equation 
for each n and ¯��
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Given p and M, and looking for f, this is a typical linear 
problem that could be solved by several methods.  Here we 
are using the conjugate gradient algorithm.  Since the 
dimension is significantly reduced from 3D to 2D, efficient 
calculation is expected. 

III. I MPLEMENTATION 
 

Fan-beam projections of the Shepp-Logan ellipse 
phantom and Hoffman brain phantom with different 99Tcm 
activity concentrations were simulated on a circular orbit of 
64 evenly spaced views, taking into account the photon 
attenuation and collimator response effects.  Both the noise-
free projection data and their noisy versions with Poisson 
noise were used to test the reconstruction algorithm. 
 

The reconstruction procedure is as follows: 



1. Perform the transforms on PSF matrix M.  This task 
is a pre-calculated step given the PSF, before image 
reconstruction. 

2. Perform Fourier transform on the projection data for 
variable z, and Fourier series expansion for variable 
�� � 1RWH� WKDW� VLQFH� WKH�36)� LV� SHULRGLF� DERXW� �� VR�

zero padding is not necessary.  But for variable z 
(the shift invariant characteristics), zero padding may 
be needed. 

3. Utilize the conjugate gradient algorithm to solve the 
linear equation (8). 

4. After the ),,(
~ ξρ nf  is obtained, perform two 

times of Fourier inversion transform, relating to z 
DQG� ��WR�ILQG�WKH�VRXUFH�LPDJH� 

 
In our experiment, the response function was chosen as 

the most general Gaussian function.  Because of the CHD 
method, transforms between Cartesian coordinate system and 
polar coordinate system is needed. 

IV. RESULTS AND DISCUSSION 
 

The simulation results of different reconstruction procedures 
are shown in Figure 2, which gives four arbitrary slices for 
illustration and comparison purposes.  Similar results were 
obtained for the Shepp-Logan phantom.  The first row 
contains slices from the original Hoffman brain phantom.  
The second row shows the reconstructed results from the 
blurred projection data containing the photon attenuation and 
collimator response effects.  The third row represents the 
reconstructed images from projection data with Poisson noise 
at a noise level similar to a typical clinic study.  For a 
64x64x32 image, the reconstruction time was less than one 
minute on a PC platform with Pentium III 550 processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Hoffman brain phantom results.  Top row 
represents the original Hoffman phantom slices.  Second 
row is the reconstructed image from noise-free projection 
data with attenuation and PSF effects included.  Bottom 
row is the reconstructed image from projection data 
containing Poisson noises. 

V. CONCLUSION 
 

First, our method inherits the idea about angular 
expression in our previous work[20,21], which is beneficial for 
non-parallel ray collimator geometry.  It is not a back-
projection method of source and projections with 
compensation for photon attenuation and resolution variation.  
It constructs a new relationship between source image and 
projection data using CHD technique.  In this relationship, 
the photon attenuation and collimator response can be 
simultaneously considered in 3D.  The compensation can be 
implemented slice-by-slice along the rotation direction after 
Fourier transform, because of the shift invariance along that 
direction.  Second, estimation of source image is efficient 
and accurate via the conjugate gradient algorithm, which 
converges in finite iterations, as demonstrated by Figure 2.  
The simulation study revealed this optimization of the 
proposed algorithm.  The order of matrix M in (8) is only 
NxN size, and the calculation for N slices can be performed in 
parallel at the same time, so the computation is very efficient. 
 

This method considers the periodical property of 
projection rays of non-parallel-hole collimator geometry and 
the shift invariant characteristics of fan-beam configuration 
along the rotation direction.  The periodic property is 
explored by the CHD technique.  The shift invariant 
characteristics are efficiently utilized in the Fourier space.  
This strategy reduces the 3D PSF treatment into 2D task in the 
Fourier space and, therefore, improves the computing 
efficiency.  For the reduced matrix size, the conjugate 
gradient method is a choice for the calculation.  The 
computer simulation is encouraging.  Further validation by 
physical phantom experiments is under progress. 
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